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This report represents the results of a project in which decompilation
techniques were used to identify the essential characteristics of a high-
level programming language suitable for real-time training device systems.

The project consisted of three phases. First, a decompiler, writtea in
FORTRAN, was implemented to map assembly language for a Xerox SIGMA-7
computer into a collection of tables and data forming the basis for
Phase 3. Second, a structured collection of 33 modules representing an
operational system for an F4 trainer was decompiled. Finaily, the data
gathered from Phase 2 was analyzed to identify language festures appro-
priate for some high-level, application-oriented programming language.

The results of the decompilation showed that in addition to features
typically supported in conventional scientific-oriented programming
languages, a language suitable for trainer systems similar to the Fé
should include bit-string and locator data; locator data is data that
indirectly references other data. It was found that dynamic data
structures and recursion were not essential whereas control mechanisms
like the IF-THEN-ELSE, Zahn-loops, DO-WHILE and REPEAT-UNTIL were very
prominent and should be supported in such a language.
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PREFACE

The objective of this project is to apply known and proven decompilation
techniques in an attempt to identify patterns and structures within
assembly language source code that might suggest or correspond to
familiar constructs found in meny high-level programming languages.
This effort was novel in the sense thst no one, to our knowledge, has
used decompilation as an approach to language design.

Several people were involved at various stages of this project and we
take space here to recognize those who shared in the effort. Dr. Terry
Frederick, Chairman of the Computer Science Department at the University
of Central Florida (formerly Florida Technological University), was co-
principal investigator on this project and acted primarily as project
administrator and consultant. Dr. Ron Dutton, also a faculty member in
the Computer Science Department, UCF, contributed to the programming
effort and provided support during the early stages of development.
Among the most dedicated comtributors to this effort were Robert Larsen
and Spsidharan Menon (graduate assistants at UCF) who shared most of the
programming and debugging effort and spent seemingly endless hours in
the computer lab running the decompiler. Finally, Tami Bonar, who joined
the project near its completion, helped with debugging and program
documentation.
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SECTION I
INTRODUCTION
CONTRACT OBJECTIVES

The primary objectives of this contract were to identify and formulate
the features of a high-level programming language suitable for imple-
menting aircraft trainer systems. The specification for such a language
was to be derived from data collected on research systems currently
operational at the Naval Training Equipment Center, Orlando, Florida.

METHODOLOGY AND BACKGROUND

Four design criteria determine to a large measure the features comprising
a high-level, application-oriented language. First, the language must
contain as primitive elements, those data types and data operations
intrinsic to problems in the application area. Secondly, the language
should be "robust"; that is, it should allow sufficient variety of
constructs to make possible the precise representation of computations
and control structures frequently occurring in application problems.
Robustness is important because it gives the compiler writer more infor-
mation about the precise nature of a computation making possible the
generation of better object code; this is particularly important in real-
time applications like those encountered in aircraft trainer systems. A
third criterion is the availability of features that add to the self-docu-
menting properties of the language; features of this kind include
constructs that induce structure in the control and data flow. This
criteria is important because it increases readability, thereby, making
debugging and maintenance easier and more effective. Finally, the
language should be high in its expressive power; that is, it should
provide constructs permitting complex processes to be expressed
succinctly. Expressive power in a lsnguage increases programmer
productivity and tends to diminish his propensity for error.

The primary objective of this contract was to analyze an F4 trainer
system written in the assembly language, SYMBOL, for the Xerox SIGMA-7
computer. This analysis was to be carried out in an effort to gather
data sufficient to indicate the language constructs best satisfying

the design criteria described above. Because a high-level, applicaticn-
oriented language was desired and because the F4 system was written in
assembly language, decompilation was a natural choice as an approach to
obtaining the desired data.

Decompilation methods have been -tndiedzand developed by lloulell and
have been used with success by Friedman™ in transporting operating

1. Housel, B.C. "A Study of Decompiling Machine Languages into High-
Level Machine Independent Languages", Tech. Report, CSD-TR-100,
Purdue University, 1973.

2. Friedman, F.L. "Decompilation and the Transfer of Mini-Computer
Operating Systems", Ph.D. Thesis, Purdue University, 1974.
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systems. Although complete decompilation of assembly language programs v
18 normally performed with some predefined high-level syntax as a target,
early stages of the decompilation process produce information that is

essentially language independent and helpful in indicating what high- L §
‘— level constructs are present in the source program. In the next section,

we describe the decompilation process more fully, identify the type of

data gathered and show how this data was interpreted to suggest those
language features satisfying our design criteria.
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SECTION II
DECOMPILATION APPLIED TO LANGUAGE DESIGN
DECOMPILATION AND DATA GATHERING

The first phase of decompilation performs essentially the inverse function
of code generation in compilation; that is, symbolic machine or assembly
language is mapped "up" to an intermediate low-level language that is
largely machine independent. During this process statistics can be
gathered concerning the composition of the original source code with
regard to special operations, data types and addressing modes. This
information is most significant in determining the simple data types
that must be supported in the high-level language. Composite data
structures like arrays, stacks, queues, linked lists, etc., are much
more difficult, if not impossible, to recognize during the first phase
of decompilation. Detection of more complex data types is possible only
by considering groups of instructions in combination with the control-
flow structure of the source code.

The second phase of decompilation identifies code segments called
"“blocks" and analyzes the control flow among blocks. The effect of

this phase is to reduce a program module to a "flow graph" so that high-
level control structures (e.g. FOR and DO loops, IF-THEN-ELSE) can be
identified. The structure of a flowgraph together with knowledge regard-
ing the functional properties of program blocks can suggest the use of
complex data structures. Flow analysis can also identify regions of
the program absorbing relatively large amounts of execution time.
Information of this kind is extremely important in suggesting what
optimization techniques should be emplcyed and where they should be
applied.

The third phase of decompilation normally performs code generation
from the program's flowgraph representation to high-level object code.
Since the high-level source language was an unknown, this phase of
decompilation was not implemented. It was the primary objective of
this contract to determine the most important feutures of this unknown
language based on the data gathered by the first two phases of the
decompilation process. We, therefore, present in the following para-
graphs a detailed description of each of these decompilation phases,

a summary of the data collected in each phase and our conclusions
concerning this data.

BLOCK GENERATION PHASE

The first phase of decompilation was designed to accomplish the fol-
lowing objectives:

1) Identify and classify "blocks";

2) Classify instructions and determine frequency distributions
based on class;

3) Determine a frequency distribution of addressing modes.

7
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BLOCK IDENTIFICATION AND CLASSIFICATION

A "block" is defined to be a sequence of instructions, 1 00 PERERES o
with Il representing the only entry point to the sequence a%d if for
some k, I, is a transfer instruction (condition or unconditionai), then
I. is a transfer instruction for each j>k. Furthermore, if I, is an

conditional transfer, then k=n. Each program module was decComposed
into blocks during the first phase of decompilation. An instruction, I
defined the beginning of a new block whenever I satisfied one of the
following conditions:

1) I represented an entry point to the module.

2) I was referenced by some instruction within the module.

3) I was a nontransfer instruction following a transfer
instruction.

4) 1 was the first instruction following a sequence of
instructions from which I could not be reached except by a
direct transfer.

Condition &4 is really subsumed by the others if the assumption is made
that no "dead" code is present in any module. To keep the decompiler as
general as possible, condition 4 was included.

Blocks fall into three functional categories. The first category repre-
sents all blocks that evaluate some condition prior to a logical decisior
point dependent upon that condition. Blocks of this type can be modelled
by the following high-level statements.

A sequence of nontransfer statements

IF (EXPRESSION) GOTO L1
GOTO L2

The second category can be identifed as "loop initialization." Blocks
in this category contain no transfer instructions themselves but occur
just prior to a loop entry point.

L1
Loop Initialization Block

L2
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The third category contsins blocks forming the alternatives of an IF-
THEN-ELSE construct.

IF(EXPRESSION) GOTO L1
BLOCK 1 ("else" alternative)

GOTO L2
L1

BLOCK 2 ("tken" alternative)

L2

The functional classification of blocks becomes important in the deter-
mination of high-level conditional constructs and will be addressed in
the next subsection.

In addition to identifying blocks, it was necessary to assign a '"type"
to each block that would be useful during the second phase of decompi-
lation. Block type could be any value in the range 1 to 7 depending on
the particular combination of the following three properties exhibited
by a given block.

1) The block contained an entry point of the module.

2) The block contained module exit or return.

3) The next sequential block could not be reached except by
direct transfer.

Table 1 shows the correspondence between block type and the presence of
the attributes above. An "x" entry indicates the presence of an
attribute. ;

TABLE 1. BLOCK TYPE

ATTRIBUTES

1 2 3
0
1 X
2 X
3 x x
4 x
5 x x
6 3 R
7 X x x
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Block type was used not only for flow-structure analysis, but also for
determining whether or not the high-level objective language should
support a multiple-entry-point feature in the definition of subprograms
or procedures. The results of the decompilaton revealed the figures
displayed in Table 2. This data was based on a total of 33 modules
analyzed.

TABLE 2. ENTRY POINT DATA

Number of

Entry Poiats Frequency (No. of Modules).
) B A S e S e 22
L i s e T s 3

> e G b s A i 8

Since 33 percent of the modules had more than one entry point, it was
apparent the multiple-entry feature should be included in the high-level
language.

INSTRUCTION CLASSIFICATION

The primary source of information used to identify primitive data types
for the high-level languge (HLL) was the instruction class frequency

distribution. By carefully classifying the instructions of the SIGMA-7,
we hoped to identify the use of one or more of the following data types.

1) integer

2) single precision floating point
3) double precision floating point
4) string

5) logical (true/false)

6) Boolean (bit-string)

7) stacks.

We have included "stacks" in this list because the SIGMA-7 has specific
instructions for manipulating stacks. Twenty-one instruction classes
were selected in an attempt to identify the use of one or more ¢f the
data types above.

1) Bit Operations/Non-Compare

2) Bit Operation/Compare

3) Byte Operations/Non-Compare

4) Byte Operations/Compare

5) Half-Word Operations/Non-Compare
6) Half-Word Operations/Compare

7) Full-Word Operations/Non-Compare
8) Full-Word Operations/Compare
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9) Double-Word Operations/Non-Compare
10) Double-Word Operations/Compare
11) Float-Short/Non-Compare
12) Float-Short/Compare
13) Float-Long/Non-Compare
14) Float-Long/Compare
15) Logical (OR,EOR,AND)

16) Stack Operations

17) Branch-On-Condition

18) Branch-On-Count

19) Branch (Subroutine Linkage)
20) Miscellaneous

21) Exchange-Word.

Some comments are in order concerning the interpretation of some of these
classes. Class 1 consisted primarily of shift instructions and instruc-
tions that set hardware conditions. Class 3 consisted of byte-string
operations. Instructions in Class 5 were interpreted as indexing oper-
ations for loop coantrol or for counting purposes. Classes 7 and 9
represent instructions used primarily for true integer arithmetic. Classes
11-16 are self-explanatory. Instructions in Class 17 were assumed to be
used for conditional logic and control of non-counting loops. Class 18
denotes instructions used primarily to control counting loops. Class 20
included instructions primarily pertaining to I/0 handling. The last
class, 21, consisted of the "exchange-word" instruction. This instruc-
tion interchanges or "swaps" two memory words. Forming a single class
from this one instruction was done to determine if a swap function

should be included as a system function in HLL. Table 3 shows the
results of our analysis for the 33, F4-modules. Percentages were based
on a total of 7,614 instructions.

TABLE 3. INSTRUCTION~CLASS FREQUENCY DISTRIBUTION

PERCENT* CLASS DESCRIPTION
49.3 7 Full-Word/Non-Compare
17.1 17 Branch-On-Condition
16.1 11 Float-Short/Non-Compare
5.5 19 Subroutine Linkage
4.9 8 Full-Word/Compare
2.5 1 Bit-Operation/Non-Compare
2.1 15 Logical
0.7 20 Misc. (I/0)
0.6 2 Bit Operation/Corpare
0.5 18 Branch-On-Count
0.4 9 Double-Word/Non-Compare
0.2 21 Exchange-Word
0.0 All Other

*All percentages are rounded to nearest .1 percent.

11
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The rather high percentage of instructions in Class 7 can be explained

by noting that all full-word "load" and "store" operations belong to ’
this class. In addition, the absence of representatives from Classes 5

and 6 sugges:t that indexing and counting was done using full-word

operations. Although a more definitive classification scheme could have ¢
disclosed the precise composition of Class 7, it is clear that full-word

binary integers together with the standard arithmetic operations on

integer data must be supported in HLL. This proposition is further

supported by the presence of classes 9, 18 and 8.

1 Practically all computation was done in Class 11, suggesting HLL should
] definitely support single-precison real arithmetic. In addition,

E manual inspection of some of the modules indicated the need to support
all trigonometric functions as a standard part of the language. A very
surprising statistic was the total absence of classes 13 and 14.

Logical data was clearly indicated by the presence of Class 15 instruc-
tions. The surprisingly high frequency of Class 1 and 2 instructions
suggest some facility should be provided in HLL for defining bit-string
data and performing bit-string operations. Manual inspection of the
code indicated that most bit instructions were used to set and test
"switches." Since approximately half the modules performed bit opera-
tions, it was apparent that bit data should be an essential feature

of HLL.

)

The results of instruction-class data suggest the following data
facilities should be supported in HLL.

1) Fixed-point integer data

2) Single-precision floating-point data

3) Bit variables and bit strings

4) Logical data

5) Arithmetic operations for Classes 1) and 2)
6) An Exchange-Word primitive function

7) Trigonometric primitive functions.

ADDRESSING MODES

The SIGMA-7 supports a variety of addressing capabilities. Five different (%
addressing modes were identified for the purposes of our analysis. They
are:

1) Direct or Absolute Addressing
2) Indexing via registers

3) Indirect addressing

4) A combination of 2) and 3)

S) Immediate

In addition to gathering frequency counts for these five addressing o
modes within cach instruction class, frequency counts were also main-

tained for "external" references in each instruction class. An "external"

reference is a reference to a data item or instruction defined in as
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physically distinct module. Irc fact, of the 33 modules in the F4 soft-
ware, 2 modules were strictly data modules; that is, they contained no
executable instructions and served to resolve many of the external

- references made in other modules.

The presence of indexing usually suggests the use of array constructs

S of one or more dimensions. Indirect addressing is typically used in
addressing parameters passed to a subroutine, returning from a subroutine
call and in accessing and modifying linked data structures like lists
and trees. The presence of external references to data implies the
need for "global" data structures as provided by block structured
languages like ALGOL on P1/1, or "common" data similar to that supported
by FORTRAN. Table 4 summarizes the statistics accumulated for addressing

modes.
TABLE 4. ADDRESSING MODE STATISTICS
PERCENT OF INSTRUCTIONS
(A1l Modules)
DIRECT....... Py AECE I S TR S R E 64.7%
INDEXING..... ol o0 PO S SRS TR R T PR 5.1%
INDIRECT..... Vi B AL e T ST 1.3%
INDIRECT AND INDEXING........... Je il 0. 6%
‘:; IMMEDIATE. ... ......o0c0vveeennnnans 5.5%
EXTERNAL..... PO R e R Bt e e 23.1%

Practically all instances of indexing in the F4 were for the purpose of
array addressing. Indirect addressing was used in three contexts:
First, in effecting a return from subroutine call; second, in accessing
parameters passed to a subroutine; and finally, indirect addressing was
used to access external data via indirect references through other
external variables (sometimes with post-indexing). The first two uses
of indirect addressing represent standard linkage mechanisms for
invoking and returning from subprograms. The third use suggests the
addition of a new data type to the HLL which we shall call "locator"
data. A locator variable would take as its value the location or

. address of some other data structure. To support the locator data

type would require including a unary address-operator that when applied

to a data structure or variable returns its address. Locator variables

would allow the building of linked data structures quite easily in HLL.

The high percentage of references to external data indicate a clear
need for the COMMON feature found in FORTRAN. Distinct data areas
independent of any particular module serving as a data communication
medivm between two or more modules is to be desired over the parameter
passing mechanism. This is particularly true if the number of data
items communicated is relatively large. Extensive use was made of this
method of data communication throughout the F4 system.

13
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CONTROL FLOW ANALYSIS

The second phase of decompilation was designed to construct a flow

graph of the blocks identified in the first phase. In addition, statis-
tics were gathered on the frequency of instruction sequences. Instruc-
tion sequences that computed the value of some expression were identified
within each block and a count of their frequency of occurrence was
maintained at both the block level and module level. It was hoped that
by accumulating instruction sequence data, we could identify simple
functions that should be supported in HLL. Unfortunately, the only
sequences that occurred with significant regularity were sequences
containing at most two operators. The analysis did show that logical
expressions involving AND, OR and EXCLUSIVE-OR represented 4.63 percent
of all sequences identified. This was interpreted as sufficient evidence
for support of these operators in HLL.

LOOP ANALYSIS

Perhaps the most interesting results were derived from the identifi-
cation and classification of "loop" constructs. Our purpose was to
classify all loops into 8 categories according to the number and
placement of loop termination points. The results would show in
addition to the type of loop constructs needed in HLL, the "natural"
frequency of occurragce of single-entry, single-exit loops like those
proposed by Dijkstra™.

B

|
A "loop" was defined as a sequence of blocks, B Bn, satisfying:

1? Py
1) B, = B_ and no B, other than B, (B ) occurs more than once.
2)....C ntrol can reach B, from some module entry point without

passing through any block in the sequence.
3) Control flow can pass from Bi to Bi#l' 18i<n.

The "head block" of a loop is always its entry block, B.. The "tail"

of a loop is always the block - An "interior block® is any block

other than the head or tail. AR “exit" block is any block from which

control can directly pass to a block not in the loop. Table 5 clas-
sifies loops according to whether: 1) the head is an exit, 2) an
interior block is an exit, 3) the tail is an exit or some combinstion

of these possibilities. Note that type 0 loops represent infinite loops.

3. Dahl, 0.J., Dijkstra, E.W. and Hoare, C.A.R., Structured Programming,
Academic Press, New York, 1972.
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TABLE 5. LOOP CLASSIFICATION '

Attributes Present 'y

1 2 3 ‘

Type 0 Attributes: %
1 X 1 = Head Exit |

2 x 2 = Interior Exit |

3 x x 3 = Tail Exit |

4 X 1

5 x x ‘

6 x x g

7 x x x '

{
The results of the loop classification were very interesting particu- |
larly becsuse of the surprisingly low frequency of occurrence of the
DO-WHILE loops, Class 4, and the REPEAT-UNTIL Loops, Class 1. Table
6 gives a complete summary of the loop analysis data.

»
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TABLE 6. LOOP CLASSIFICATION DATA

Module No. of No. of LOOP DISTRIBUTION BY CLASS
Kame Blocks Loops 0 1 2 3 4 5 6 7
|
ACI 106 0 g i BN R RS
ACS 97 0 " g G O R S
APL 41 15 W s« e VT RIE
CIV 174 0 s L G N SR G R
CPM 141 0 o e e R
CTL 29 0 i S R R R
DC 49 15 P T e
DEC 41 0 S - T PGP R
DR 226 106 - 1 32 12 - 9 34 18
DRED 24 6 - - - 1 - 2 1 2
EGI 30 24 - - - - - - - 24
EPE 146 1 - - - - - - 1 -
ESE 48 0 - - - - - - - -
FBP 64 0 o e T RS e g e
FG 6 2 - - - - - 2 - -
FGMV 38 12 - - - - - 12 - -
INTG 9 2 - 1 - - - 1 - - g%
IT 40 1 - - - - - - 1 - 3
LCE 90 0 - - - - - - - -
LDE 14 0 - - - - - - - -
LDCE 23 0 - - - - - - - -
LE 35 0 - - - - - - - -
MCC 41 1 1 - - - - - - -
MCG 5 0 - - - - - - - -
PIC 79 32 - 1 - - 2 4 1 24
RNG 1 0 - - - - - - - -
RTIO 9 2 - - - - - 2 - -
SIN 26 2 - - - - - 2 - -
SS 36 0 - - - - - - - -
STAR 31 13 - - 2 - - 8 3 - a
TA 32 4 - - - - - 4 - -
TABL 1 0 - - - - - - - -
4
Totals . . . . . . . 238 1 3 3% 19 2 59 42 178

Based on the percentage of Branch-On-Count instructions in Table 3, the
number of counting loops was estimated to be 16 percent of the total
number identified.

The loop data suggests HLL constructs like those illustrated below. The

"WHEN" statement causes the inner-most loop containing it to terminate :

with control being passed to the first statement following the corres- °
ponding "LOOP" ststement. Any number of WHEN statements would be

allowed within the body of & loop. A "counting” option is allowed oaly




NAVTRAEQUIPCEN 77-C-0069-1

on the loop entry statement, DO, while both the WHILE and UNLESS
options are permitted on the loop-end statement, LOOP. "V" denotes a
counting variable. "A" denotes an arithmetic expression, while "L"
denotes a logical expression. Optional clauses are indicated by square
brackets.

V= Al TO Az BY Aa

DO WHILE “‘1) H
UNLESS (Ll)

WHEN (Lz) LEAVE;

3)

LooP WHILE (L
UNLESS (L

3)
CONDITIONAL LOGIC

Analysis of the control-flow graphs produced by the decompiler showed
that only 5 out of 1,732 blocks had more than 2 successor blocks; each
of the 5 had 3 successors. Furthermore, 7 blocks consisted of a single
conditional branch instruction implying very few blocks had more than
3 successors; the 7 single conditional-branch blocks were distributed
among 6 modules. A more detailed examination of single-entry/single-
exit subgraphs with no internal loops showed that practically all
conditional logic could be represented by IF-THEN and IF-THEN-ELSE
constructs with compound THEN and ELSE clauses. Another high-level
construct that occurred with high frequency was the conditional GOTO.
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SECTION III

é CONCLUSIONS
We summarize our findings by enumerating those features characterizing 4

a high-level language (HLL) suitable for developing applications soft-
ware for aircraft trainer systems similar to the F4. Many of the
features we identify are common to many conventional programming
languages. These include integer data, floating point data and the

usual set of arithmetic operators that apply to these data types.

Logical data and the logical operations of "AND", "OR" and "NOT" were
also found to be necessary features in HLL. Static array structures

and COMMON data areas, like those found in FORTRAN, are also necessary
elements of HLL. HLL should also support facilities for permitting

| different data structures to share the same storage area; a facility

{ like the EQUIVALENCE concept in FORTRAN would be appropriate. Because

| of the relatively heavy use of tabular and simple data that were constant ‘
F | or "read only" data structures, some facility must be provided in HLL for 3
f | initializing variables and arrays at compile or load time. Facilities

E | for defining procedures and functions with multiple entry points were

| also found to be desirable ingredients of a language designed for trainer
systems. Although the GOTO construct must be included in HLL, its use
within the F4 software was very seldom found to be the result of s :
r "irresponsible style" on the part of the programmer.

For the most part, the features we have listed above sre common to a
number of popular high-level programming languages. We complete our
summary of the properties ascribed to HLL by discussing in a little more
detail those features that were very prominent in the F4 software, but
were unusual in some respect and therefore of special interest as a
result of this research.

DATA STRUCTURES

Add LOCATOR and BIT(n) as new data types, where "n" denotes the length of

a bit-string variable. LOCATOR variables take on values that represent the .
location or address of some other data item. LOCATOR variables can be

typed, dimensioned, equivalenced, placed in COMMON or passed as parameters

just as any other variables. BIT variables can be equivalenced to other Y ‘
variables. i

DATA OPERATIONS

While both LOCATOR and BIT variables should be allowed in mixed mode

expressions (where they should be treated as INTEGER data), distinct

operations should be provided for each type. An ADDR built-in or system

function should be available returning the location of its argument.

Operations like .AND., .NOT., .OR. and .EOR. should be available for BIT

variables. A system function should also be provided for exchanging the o
values of two variasbles.

18
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CONTROL STRUCTURES

A loop-construct like the one illustrated below consists of a "DO"
statement having an optional clause with three distinct forms together
with a corresponding "LOOP" statement also having an option with two
alternative forms. Within the loop body, at the same nesting level, can
be any number of "WHEN" statements. Form 1 of the DO statement is for
creating a counting loop with "V" denoting a control variable and A, A,,
and A, denoting arithmetic expressions. In Forms 2 and 3, "WHILE" lakez
a log?cal expression defining a condition for entering the loop body,
whereas "UNLESS" takes an expression defining a condition for terminating
the loop. The WHEN statement defines a condition for loop termination
and causes control to pass to the statement immediately following the
LOOP statement if the condition is met.

DO |[V=A, A, [A) ;
winel(e)?’ 3
UNLESS (E)

WHEN (E) LEAVE

LOOP| WHILE (E) ’
UNLESS (E)

In addition to a new loop construct, it would be desirable to have condi-
tional constructs like IF-THEN or IF-THEN-ELSE with compound clauses. The
IF-THEN statement w.:1ld introduce a group of statements to be executed
only if the logical expression "E" is "true." The statement group would
be terminated by a matching "ENDIF" or "ELSE" statement. An occurrence

of the "ELSE" would signal the beginning of another statement group to be
executed only if "E" is "false." The ELSE group would be terminated by
the ENDIF. The IF-THEN and IF-THEN-ELSE constructs could be nested to
any depth.

IF (E) THEN
THEN-~group
ELSE
ELSE-group
ENDIF
19
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INPUT/OUTPUT

While some evidence existed within the decompilation data suggesting

facilities should be provided for handling I/0O interrupts, it is noi clear

that input/output handling at this level should be supported in HLL; this
function is most appropriately performed within the operating system. A
compromise would be to allow HLL system functions that could check for the
occurrence of various kinds of interrupt conditions, returning control
only if the condition occurred or had not occurred.

SUMMARY

Real-~time programs must be efficient in their use of processor time. Pro-
gramming at the machine level is one way to guarantee a certain level of
performance. Programming real-time applications in a high-level language
has obvious advantages, but if performance of the object code is of para-
mount importance, the choice of language or language features probably has
only secondary effects. Using good programming techniques and employing a
good optimizing compiler will most probably have the greatest impact on
performance.

While this project has sought to identify those features essential to a
high~level language suitable and "natural" as possible for implementing
real-time trainer systems, it has not determined the degree to which
language design effects the ultimate performance of such systems. The
question of design effectiveness remains open and represents an area of
further research.
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SECTION 1V
RECOMMENDATIONS

T

The decompilation approach to designing a high-level language for traimer
applications has been fruitful and has produced some unexpected results.
Nevertheless, it is difficult to evalute the success of this approach
after having applied it to only one system, the F4. Further studies are
needed employing this technique with other types of trainer programs.

In addition, a formal specification of HLL should be developed along with
a compiler using a variety of optimization algorithms. Only by comparing
the performance of compiled, unoptimized and optimized HLL code with the :
original handwritten machine code can we determine the most significant ‘
factors in writing and maintaining high-performance trainer application
systems.

21
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GLOSSARY

addressing mode: the process by which a memory operand is located or
fetched for a given machine instruction.

bit-string: a sequence of binary digits treated as a single unit or
operand in some operation.

block: a sequence of machine instructions whose only entry point is the
first instruction and for which any transfer instructions occur at
the end of the sequence.

branch-on-condition: a type of conditional transfer or "jump" instruction
that is based on the setting of hardware condition flags preset by
the execution of an earlier instruction.

branch-on-count: a type of conditional transfer or "jump" instruction
based on the value of some counter normally held in a register.

compiler: a process or processor designed to translate procedures written
in a source language to equivalent procedures expressed in machine
or assembly language.

control structure: a programming language statement or group of state-
ments designed to determine the flow or sequence of executable
expressions.

decompilation: the inverse process of compilation; that is, translating
machine or assembly language procedures into a language that is more
programmer oriented.

entry point: the location to which control is passed to execute or acti-
vate a program module or block within a module.

exit block: a block within a loop from which control can leave the loop.

external reference: a reference, either fetching an operand or transfer-
ring control, generated in one module but resolved to or satisfied
by another module.

flow graph: a collection of nodes connected by directed arcs. Nodes
correspond to program blocks. The arcs define the blocks immediately
accessible from a given block.

global duta: data that is accessible in one module but anot defined within
that module.

head block: the block containing the entry point to a loop.

immediate addressing: the method of fetching an instruction operand whose
value forms part of the instruction being executed.
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indexing: the use of registers in adjusting or computing an addressable
location in memory that varies during the execution of a program

segment .

indiract refererce: a reference to a data item or instruction operan
obtaincd by fetching the value of another memory location holding
the reference address.

interior block: any block within a loop other than the head or tail blocks.

, loop: a sequence of instructions or blocks that can be repeatedly executed
1 as a result of the control flow structure of a module or program.

module: a group of program statements performing a specific function with-
in the logical organization of a program.

parameter passing: the mechanism or processing convention used to transmit
a set of data items from one module to another where the specific s-t
of items may vary from one call of that module to another.

source code: a program written in a given language serving as the input
to be translated by a compiler orideconpiler.
l
subroutine linkage: the instruction sequence executed to transfer control
from one module to another.

syntax: a finite set of rules describing how to construct programs
expressed in a given language.

tail block: the block last executed before the head block within a loop.
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